逻辑运算
初始化一个股票涨幅变化的数组
stock_change = np.random.normal(loc=0, scale=1, size=(8, 10))
将其输出出来看看
array([[ 0.89645874, 1.45037927, -0.01620999, 2.09949884, 1.85993243,
-0.37292596, 1.71902613, -0.52602534, -0.83549712, -1.26605677],
[-0.72969931, 0.01288957, 0.88282703, 0.87208188, 0.50612155,
1.58175501, 0.04236072, 0.26521438, 0.3042681 , -0.34315946],
[-0.23597763, 0.89052316, 0.71693436, 0.96146532, -1.2500618 ,
-0.45546587, -1.4015062 , -0.32708862, 0.16733823, -1.35628827],
[-0.54845383, 0.29204192, -0.48656491, 1.80355475, -1.37148035,
-0.36061307, -0.97104768, 0.04412891, -1.41602417, -1.04087923],
[ 0.30773055, -0.41619138, 2.18740321, -0.52734335, -0.78613636,
0.64381646, 1.66345618, -0.47272867, 0.03438599, -0.34474344],
[ 1.28033718, 0.98570696, 0.90548589, 0.08737387, 0.76172384,
2.26676882, -1.05478047, 0.8607113 , -1.50994433, -0.97010282],
[ 1.08197209, -0.93683095, 1.45637994, 0.95161678, -0.52549897,
-0.11531663, 0.54464256, 0.88813627, 0.93374751, -0.24459157],
[ 0.15776581, -0.57931045, 0.96262219, -0.487419 , 0.47749288,
-1.19925145, -0.90684539, 2.32473607, -0.85620056, -0.01211961]])
进行逻辑判断
# 逻辑判断, 如果涨跌幅大于0.5就标记为True 否则为False
stock_change > 0.5
输出为这样
array([[ True, True, False, True, True, False, True, False, False,
False],
[False, False, True, True, True, True, False, False, False,
False],
[False, True, True, True, False, False, False, False, False,
False],
[False, False, False, True, False, False, False, False, False,
False],
[False, False, True, False, False, True, True, False, False,
False],
[ True, True, True, False, True, True, False, True, False,
False],
[ True, False, True, True, False, False, True, True, True,
False],
[False, False, True, False, False, False, False, True, False,
False]])
也可以选择给大于0.5的地方重新赋值
stock_change[stock_change > 0.5] = 1.1
array([[ 1.1 , 1.1 , -0.01620999, 1.1 , 1.1 ,
-0.37292596, 1.1 , -0.52602534, -0.83549712, -1.26605677],
[-0.72969931, 0.01288957, 1.1 , 1.1 , 1.1 ,
1.1 , 0.04236072, 0.26521438, 0.3042681 , -0.34315946],
[-0.23597763, 1.1 , 1.1 , 1.1 , -1.2500618 ,
-0.45546587, -1.4015062 , -0.32708862, 0.16733823, -1.35628827],
[-0.54845383, 0.29204192, -0.48656491, 1.1 , -1.37148035,
-0.36061307, -0.97104768, 0.04412891, -1.41602417, -1.04087923],
[ 0.30773055, -0.41619138, 1.1 , -0.52734335, -0.78613636,
1.1 , 1.1 , -0.47272867, 0.03438599, -0.34474344],
[ 1.1 , 1.1 , 1.1 , 0.08737387, 1.1 ,
1.1 , -1.05478047, 1.1 , -1.50994433, -0.97010282],
[ 1.1 , -0.93683095, 1.1 , 1.1 , -0.52549897,
-0.11531663, 1.1 , 1.1 , 1.1 , -0.24459157],
[ 0.15776581, -0.57931045, 1.1 , -0.487419 , 0.47749288,
-1.19925145, -0.90684539, 1.1 , -0.85620056, -0.01211961]])
也可以选择一部分进行判断
# 判断stock_change[0:2, 0:5]是否全是上涨的
stock_change[0:2, 0:5] > 0
np.all(stock_change[0:2, 0:5] > 0)
# 输出为False
# 判断前5只股票这段期间是否有上涨的
np.any(stock_change[:5, :] > 0)
# 输出为True
Last updated